Search results for "brain-heart interaction"
showing 5 items of 5 documents
Mutual Information Analysis of Brain-Heart Interactions in Epileptic Children
2021
In this work we apply the network physiology paradigm to retrieve information from central and autonomic nervous systems before focal epileptic seizure, represented respectively by electroencephalogram (EEG) signals and R-R intervals (RRI), and investigate on the presence and strength of brain-heart interactions by computing mutual information (MI) measures. Statistical significance of MI values was tested through surrogate time series generated with the random shuffle approach. Our results suggest that the proposed method for aligning signals representing brain and heart activity measured with different sampling rates, is capable of revealing coupling between RRI representing heart system,…
Synergistic and Redundant Brain-Heart Information in Patients with Focal Epilepsy
2020
In this work, partial information decomposition (PID) was applied to the time series of heart rate and EEG amplitude variability to investigate the dynamical interactions in brain-heart coupling before and after epileptic seizures. From ECG and EEG signals collected on 23 children suffering from focal epilepsy, the RR intervals and the EEG variance at ipsilateral and contralateral temporal electrodes were computed in four different time windows before and after the seizures. Static PID was used to obtain redundant, unique and synergistic components of the total information shared between the series of RR and EEG variance. Results highlight, in the progression from preictal to postictal stat…
Predictability decomposition detects the impairment of brain-heart dynamical networks during sleep disorders and their recovery with treatment
2016
This work introduces a framework to study the network formed by the autonomic component of heart rate variability (cardiac process η ) and the amplitude of the different electroencephalographic waves (brain processes δ , θ , α , σ , β ) during sleep. The framework exploits multivariate linear models to decompose the predictability of any given target process into measures of self-, causal and interaction predictability reflecting respectively the information retained in the process and related to its physiological complexity, the information transferred from the other source processes, and the information modified during the transfer according to redundant or synergistic interaction betwee…
Mutual Information Analysis of Brain-Body Interactions during different Levels of Mental stress
2019
In this work, we analyze brain-heart interactions during different mental states computing mutual information (MI) between the dynamic activity of different physiological systems. In 18 healthy subjects monitored in a relaxed resting state and during a mental arithmetic and a serious game task, multichannel EEG, one lead ECG, respiration and blood volume pulse were collected via wireless non-invasive biosensors. From these signals, synchronous 300-second time series were extracted measuring brain activity via the δ, θ, α, and β EEG power, and activity of the body district via the ECG R-R interval η, the respiratory amplitude ϱ and the pulse arrival time π. MI was computed using a linear est…
Lateralization of directional brain-heart information transfer during visual emotional elicitation
2019
Previous studies have characterized the physiological interactions between central nervous system (brain) and peripheral cardiovascular system (heart) during affective elicitation in healthy subjects; however, questions related to the directionality of this functional interplay have been gaining less attention from the scientific community. Here, we explore brain-heart interactions during visual emotional elicitation in healthy subjects using measures of Granger causality (GC), a widely used descriptor of causal influences between two dynamical systems. The proposed approach inferences causality between instantaneous cardiovagal dynamics estimated from inhomogeneous point-process models of…